In vivo validation of reconstruction-based resolution recovery for human brain studies.

نویسندگان

  • Jurgen E M Mourik
  • Mark Lubberink
  • Floris H P van Velden
  • Reina W Kloet
  • Bart N M van Berckel
  • Adriaan A Lammertsma
  • Ronald Boellaard
چکیده

The aim of this study was to validate in vivo the accuracy of a reconstruction-based partial volume correction (PVC), which takes into account the point spread function of the imaging system. The NEMA NU2 Image Quality phantom and five healthy volunteers (using [(11)C]flumazenil) were scanned on both HR+ and high-resolution research tomograph (HRRT) scanners. HR+ data were reconstructed using normalization and attenuation-weighted ordered subsets expectation maximization (NAW-OSEM) and a PVC algorithm (PVC-NAW-OSEM). HRRT data were reconstructed using 3D ordinary Poisson OSEM (OP-OSEM) and a PVC algorithm (PVC-OP-OSEM). For clinical studies, parametric volume of distribution (V(T)) images were generated. For phantom data, good recovery was found for both OP-OSEM (0.84 to 0.97) and PVC-OP-OSEM (0.91 to 0.98) HRRT reconstructions. In addition, for the HR+, good recovery was found for PVC-NAW-OSEM (0.84 to 0.94), corresponding well with OP-OSEM. Finally, for clinical data, good correspondence was found between PVC-NAW-OSEM and OP-OSEM-derived V(T) values (slope: 1.02+/-0.08). This study showed that HR+ image resolution using PVC-NAW-OSEM was comparable to that of the HRRT scanner. As the HRRT has a higher intrinsic resolution, this agreement validates reconstruction-based PVC as a means of improving the spatial resolution of the HR+ scanner and thereby improving the quantitative accuracy of positron emission tomography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance of myocardial perfusion imaging using multi-focus fan beam collimator with resolution recovery reconstruction in a comparison with conventional SPECT

  Objective: IQSPECT is an advanced high-speed SPECT modality for performing myocardial perfusion imaging (MPI), which uses a multi-focus fan beam collimator with resolution recovery reconstruction. The aim of this study was to compare IQSPECT compared with conventional SPECT interms of performance based on standard clinical protocols. In addition, we examined the concordance between convention...

متن کامل

Collimator-detector response compensation in molecular SPECT reconstruction using STIR framework

Introduction:It is well-recognized that collimator-detector response (CDR) is the main image blurring factor in SPECT.  In this research, we compensated the images for CDR in molecular SPECT by using STIR reconstruction framework. Methods: To assess resolution recovery capability of the STIR, a phantom containing five point sources along with a micro Derenzo p...

متن کامل

Methods to Improve Fiber Reconstruction at DTI-Based Tractography in the Area of Brain Tumor: Case Illustration and Literature Review

Background and Aim: DTI-based tractography could help us to visualize the spatial relation of fiber tracts to brain lesions. Several factors may interfere with the procedure of diffusion-based tractography, especially in brain tumors. The aim of the current study is to discuss several solutions to improve the procedure of fiber reconstruction adjacent or inside brain lesions. Illustrative cases...

متن کامل

Evaluation of the Reconstruction Parameters of Brain Dopamine Transporter SPECT Images Obtained by a Fan Beam Collimator: A Comparison with Parallel-hole Collimators

Objective(s): The purpose of this study was to examine the optimal reconstruction parameters for brain dopamine transporter SPECT images obtained with a fan beam collimator and compare the results with those obtained by using parallel-hole collimators.Methods: Data acquisition was performed using two SPECT/CT devices, namely a Symbia T6 and an Infinia Hawkeye 4 (device A and B) equipped with fa...

متن کامل

Evaluation of iterative reconstruction method and attenuation correction on brain dopamine transporter SPECT using anthropomorphic striatal phantom

Objective(s): The aim of this study was to determine the optimal reconstruction parameters for iterative reconstruction in different devices and collimators for dopamine transporter (DaT) single-photon emission computed tomography (SPECT). The results were compared between filtered back projection (FBP) and different attenuation correction (AC) methods.Methods: An anthropomorphic striatal phant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

دوره 30 2  شماره 

صفحات  -

تاریخ انتشار 2010